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The spans of a random walk on a simple cubic lattice are the sides of the 
smallest rectangular box with sides parallel to the coordinate axes that 
entirely contain the random walk. We consider the position, at dimension- 
less time ~-, of a random walker constrained by a set of spans S. We show 
in one dimension that if S 2 >> 4% the random walker tends to be located 
at the extremities of the span, while in the contrary case the random walker 
is most likely to be found halfway between the extremities. This is true 
whether the single-step transition probabilities have a finite or an infinite 
variance, as is shown by example. In higher dimensions the position of 
the random walker in the direction of the largest span tends to lie at the 
span extremities, while the position in the direction of the smallest span 
tends to be in the middle. 

KEY WORDS: Random walks; spans; polymer configurations; stable 
laws; Poisson transformation. 

1. INTRODUCTION 

The spans of a r andom walk are defined to be the sides of  the smallest rec- 
tangular  box with sides parallel to the coordinate  axes that  entirely conta in  
the r a n d o m  walk. That  is to say, the span in the x direction at a fixed time is 

the max imum x displacement of the r a n d o m  walker minus  the m i n i m u m  x 
displacement. There have been two sources of interest in spans:  statistics, 

and  a description of  shape for polymer chains. The earliest analyses of spans 
were those by Daniels (1) and  Feller. (2) K u h n  (a) and  Rub i n  (4~ discussed spans 
in the context of polymer chain statistics and  R ub i n  and  Mazur  (~ used 
s imulat ion to study the spans of excluded-volume r andom walks. Fur ther  
applications to the configurations of polymer chains were made by Rubin ,  
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Mazur, and Weiss. (~,7) Recent extensions of the mathematical theory were 
made by Weiss and Rubin, (8) who discussed span statistics of random walks 
with infinite-variance transition probabilities, as well as span statistics of 
random walks in continuous time. 

All of the theories so far described deal with what might be called the 
external dimensions of the random walk. An analysis of the configurations 
of an adsorbed polymer chain between two plates <9) suggests that the in- 
ternal configurations of a span-constrained random walk are likewise of 
interest. There are at least two ways in which to characterize the configura- 
tions. The first and easier is in terms of the probability density of the position 
of the random walker at an arbitrary time, and the second is in terms of the 
average occupancy of a region within the span, that is, the expected fraction 
of time spent by the random walker in that region since the beginning of the 
walk. Both of these characterizations lead to the interesting conclusion 
that there is a qualitative difference between the distributions in the direction 
of the largest and smallest spans; and indeed in a single dimension if the span 
is fixed and the time is varied, the distributions change from a U shape to a 
bell shape. 

In this paper we will use the simpler of the two functions mentioned 
above to illustrate the properties of internal coordinates for symmetric 
random walks taking place on a lattice in discrete time. 

2. ANALYSIS 

Let p(j) denote the single-step transition probability for the random 
walk, i.e., p(j) is the probability that a random walker will be displaced by 
amount j in a single step. Associated with p(j) is the structure factor ~(~o) 
defined by 

a(~) = ~ p ( j )  cos(j-co) (1) 
J 

where the last form is valid for symmetric walks. The n-step transition prob- 
ability will be denoted by U~(r) and can be expressed in terms of A(~) as 

(2"/r) ml f "-'n~f Un(r ) = J ~n(r cos(r. r dmr (2) 

for an m-dimensional lattice and a random walker initially at the origin. (1~ 
Let us first calculate the probability distribution for the internal co- 

ordinate of a random walk in one dimension. For  this purpose we can start 
with the position distribution when the random walk takes place between 
absorbing barriers at r = - a  and r = b. This probability, denoted by 
U~(r, - a ,  blro ), is the probability that the random walker is at point r at 
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step n, given that its initial position was ro. The probability that we are after 
can be expressed in terms of the Un(r; - a ,  blro). The probability that the 
random walker is at r having hit the point b at least once, while moving 
between absorbing barriers at - a  and b + 1, is 

U~(r; - a ,  b + 1]ro) - U~(r; - a ,  blro) 

Hence the probability that the random walker is at r at step n, having reached 
- a  and + b at least once, is (omitting, for simplicity, the arguments ro and r) 

V~(-a,  b) = V ~ ( - a  - 1, b + 1) - [U~(-a - 1, b) - V , ( - a ,  b)] 

- [ V ~ ( - a ,  b + 1) - V=(-a, b ) ]  - V~(-a, b) 

= A,~AbUn(--a, b) (3) 

where A= and Ao are difference operators with respect to a and b, respectively. 
An asymptotic expression for U~(r; - a ,  blro ) valid in the limit a + b -+ oo 
can be found by using an eigenvalue expansion. The result of this calculation, 
outlined in greater detail in the Appendix, is 

,~+b-~ ( ~ )  1 ~-I 
Un(r; - a ,  b]ro) = a +----'--b ~ aS+b-1 

lffi - ( a + b - 1 )  

x sin rd(ro + a)sin r + a) (4) 
b + a  b + a  

where 
~ + b - 2  

= cos (5) 
s= - ( a + b - 2 )  

for symmetric walks. We will mainly be interested in the limit a + b--> 0% 
in which case A~ + b(~p) ,,~ a(~), where ~(~) is the structure function defined in 
Eq. (1). We will use this approximation in the analysis to follow. Since the 
initial point ro is of no intrinsic interest, it is convenient to work instead with 
the expected number of random walkers at point r at step n summed over 
all starting points. This function is 

b 

Q~(r; - a ,  b) = ~ U~(r; - a ,  b[ro) 
t o =  - - a  

1 a.i (2t + 1)]  
- a + b  ~ \ a + b  ] [21+l[<~a+b 

rr(21 + 1) + 1)(r + a) (6) x cot 2(a + b) sin~r(2l b + a 

We first derive the probability density function for the internal coordinate 
of a one-dimensional random walk in continuous space, using the quantities 
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developed so far. In the lattice case let the span at step n be denoted by S 
and let p,(r I S) be the conditional probability that the internal coordinate is 
r at step n, given that the span is S. If  we combine Eqs. (3), (4), and (6), 
setting for simplicity the extremes of the random walk at a = 0 and b --- S, 
we find that 

p.(rlS) = AaAbQ.(r; --a, b) A~A~Q.(r; --a, b) (7) 
T t~ 

Notice that the denominator is just the probability that the span at step n 
is equal to S, ~v 

The first case of  interest is that of a random walk, for which the single- 
step jump probabilities have a finite variance: 

jSp(j) < oo 
J =  - -  oo 

so that to lowest order in ~0 

A"(~0) = exp[n In A(~0)] ~ exp(-n~2q~s/2) (9) 

Hence, by an argument that has been reproduced many times, 

1 [ r z 
U,(r) ~ (2~rmr2)l, 2 exp ~ -  2--~-~z) (10) 

This allows us to approximate Q,(r; - a ,  b) by 

2 ~ exp[-~rs~S(2l + 1)~n[(2(a + b)2)] 
Q,(r; - a , b ) ~  ~r ~=_~ 2l+ 1 

• sin ~r(21 + 1)(r + a) (11) 
b + a  

since for large n, a + b (i.e., the span S) is O(n It2) with a probability that 
approaches one as n -+ ~ .  Furthermore, since lal and Ibl must individually 
be 0(n112), we can replace the differences in Eq. (7) by derivatives with respect 
to these variables. If  we set mr 2 --- z and make a Poisson transformation of 
Eq. (11), we find that 

Q~(r ; -a ,b )=  ,=~- | ( -1 ) ' (qb  ( r+a+(2r )  ~'21(a+ b)) 

dg(r + a -  l(a + ( ~ ) ~  b ) ) _  1} + 
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where (I)(x) is the error function defined by 

q~(x) = (2~r) -1/2 exp ( -u2 /2 )  du (13) 

In  order  to plot  results that  are comparable,  we will normalize the internal 
coordinate by setting r = OS, where 0 ~< 0 ~< 1. The probabil i ty distribu- 
tion p~(r[S) in Eq. (7) then becomes a probabil i ty density p~(0lS ), which is 
given by 

S 2 ~P= _ o~ ( -  1)~/(/+ 1 ) ( / +  0) exp[-(S2/(4 . r ) ) ( l  + 0) 2] (14) 
p~(O[ S) = 4-~ ~ =  - ~o ( -  1)zF e x p ( -  $212/(4~-)) 

As one might expect, S and ~- appear  only in the combinat ion S2/.r. In the 
limit -r/S 2 -+ o~ one can show, by starting f rom Eq. (11), that  

p=(O) = �89 sin ~r0 (15) 

Some curves ofp~(O]S) as a function o f  0 are shown in Fig. 1 for  dif- 
ferent values of/3 = $2/(4~-). For /3  < 1 the curves are bell-shaped and for  

Fig. 1. Curves ofp,(O[S) plotted as a function 
of 0 for different values of the dimensionless 
parameter $2/(4r). Since p,(O[S) is symmetric 
around 0 = 1/2, the curves only extend from 
0 = 0 to 0 = 1/2. This is true in the remaining 
figures as well. 
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larger values of/3 the curves are U-shaped. When/3 is close to 1 the normal- 
ized internal coordinate 0 is distributed nearly uniformly in (0, 1). The quali- 
tative picture that one gets is that when S is much greater than (S )  at a 
fixed value of ~- ( (S)  ~ 1.6~ 1/2) the random walker will tend to be found 
near the extremities of the span, while in the contrary case the random 
walker will be found mainly away from the extreme points. The function 
p,(OlS ) is a conditional density. One can integrate over the span, provided 
that one starts with the joint probability for r and S, p~(r, S): 

p~(r, S) = (4rr~a)l/2 ( -  1)Z§ + 1)(r + IS) exp -~--~ (r + IS) 2 
1 ~  - - o 0  

(16) 

which is normalized to unity. The probability density for 0 will be denoted 
by f(0)  and is given by 

fo ~ ~-- ~+~{n(n_~__++ 0-~1) n(n~ ~ -  o~jl)'~ f(O) = p,(OS, S ) S d S  = ,.., ( - 1 )  (17) 
n = l  

A curve off (0)  as a function of e is shown in Fig. 2, where it is seen that this 
averaged function is greatest near the extremities. If  the average over S is 
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Fig. 2. The probability density for f(0) averaged over all values of S as shown in (Eq. 17). 
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not taken to infinity but only to a finite upper limit, the resulting average 
can either be U-shaped or bell-shaped, depending on the parameter/3 = S2/-r. 

So far we have considered only the case of jump probabilities that have a 
finite variance. When this condition is not satisfied, the approximation in 
Eq. (11) is not valid and the results will depend on specific details of how 
the sum 

N 

= j 2 p ( j ,  (18, 
J =  - - N  

diverges. Alternatively, one can say that the analog to Eq. (9) will depend 
on the behavior of A(~0) in the neighborhood of ~o = 0. Some analysis can 
be given when p(j) ~ Aj -2 for large [j[. For simplicity we consider only the 
case 

p(j) = 3/(zr2j2), j = + 1, + 2, + 3,... (19) 

for which 

A~(cp) ,,~ exp( -  3nl~o]/~) (20) 

for small I 1. In the limit of large n we can use Eq. (5) to show that 

~ ( 3n[2l+lJ) s i n ~ r ( 2 l + l ) r + a  1 Q,(r, - a ,  b) ~ 2 exp - a + b  b + a 2 1 +  1 

=-~.2 ~ ( _  Zl) tan-lf--~-~ [r3n + a + l ( a + b ) ] )  (21) 

where the second line follows from the first by a Poisson transformation. 
If  we use Eq. (7), we find for the conditional density for 0 

pn(OlS,,, S s i n h ( _ ~ )  ~ (_1),+ 1 1( l+1)(I+0)  (22, 
z=- | [(I + 0) 2 + (3n/(~rS)) z] 

Some curves ofp.(01S ) are shown in Fig. 3 plotted as a function of 0 for 
different values of/3 = S/(3n). A comparison of Figs. 1 and 3 shows that the 
behavior of  the internal coordinate densities are qualitatively similar for 
both cases. One can show directly from Eq. (22) that f(O), defined by the 
first line in Eq. (17), is the same as that found in the case of finite-variance 
transition probabilities. It is not clear whether this is true more generally. 

Extension of the exact results to simple cubic lattices in higher numbers 
of dimensions is straightforward and we need not present it in detail. We 
have shown ~a) that in the case of finite-variance transition probabilities the 
span distribution is asymptotically separable provided that the random walk 
is symmetric in each dimension. That is to say, 

p,( Sx , $2 ..... S,) ~ p(~)( Sx) p(,Z)( S2) ... p~a)( S,) 
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Fig. 3. Curves of pn(O1S) corresponding to a 
stable law whose single-step transition prob- 
abilities are p(j) = (3[~#).i-2,j = + 1, + 2,... 
The different curves correspond to different 
values of S/3n. 

as t -+ o% where p(~X)(S) is the span density in one dimension. In this asymp- 
totic regime the probability density of the internal coordinate of any span 
is identical to that found in the one-dimensional case. One can derive results 
analogous to that in Eq. (17) for ordered spans in k dimensions. If P~(S) is 
the probability that in (dimensionless) time ~- a one-dimensional span is 
~< S, then the probability densities for the internal coordinates of the smallest 
and largest spans, respectively, are 

f 0  c~ A(o) = k p~(OS, s ) [ 1  - P~(S)I~-lS dS 

fe(O) = k p,(OS, S ) P ~ -  I ( S ) S  d S  (23) 

The probability P , ( S )  is (8) 

8 ~ 1 [ 
P~(S) = ~ .=~fo(2n  + 1) 2 1 + 

~r2(2nsz+ 1)2r] exp(  ~'2(2ns2+ 1) 2r 

(24) 
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Fig. 4. (a) Curves of the probability density of fl(O) corresponding to the smallest 
ordered span in different numbers of dimensions. (b) The same for the largest ordered 
span. 
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Notice that f1(0) andfk(0) are independent of ~-, as one can easily verify from 
the definitions of p~(r, S) and P~(S). Some curves off1(0) and fk(O) as func- 
tions of 0 are shown in Fig. 4. The curves indicate that in the direction corre- 
sponding to the largest span the random walker tends to be found nearer to 
the extremities of the span, while in the direction of the smallest span the 
random walker tends to be found closer to the central portion of the span. 
This asymmetry is accentuated as the number of dimensions increases. It 
was first observed by Rubin and Mazur (11) in recent simulation studies and 
is related to the asymmetries in random walks discussed by Kuhn, (12) Hollings- 
worth, (~3~ and others. (~4'~5) 

Our results can be generalized in several directions. We started from a 
random walk in discrete time, but the formulas that arise from a continuous- 
time random walk (~6) can be found quite simply. Let r be the probability 
density for the time between jumps and let r be the Laplace transform 
of r Then the Laplace transform of the time-dependent analog of 
Q,(r; -a ,  b) [Eq. (11)] is 

Q~*(r; - a ,  b) = i - r 
s(a + b) 

x ~ cot[Tr(2/+ 1)/(2(a + b))] sinbr(2/+ 1)(r + a)/(a + b)] 
1 - r 1)/(a + b)) 

(25) 

If  the mean time between successive steps is Ix < 0% then it follows from an 
analysis similar to that given in Ref. 8 that Eq. (14) remains valid at times 
t >> ix provided that the parameter r in that equation is defined by ~- = e2t/ix. 
A similar remark is true for Eq. (22), provided that n is replaced by t/ix. In a 
later study we will analyze further properties of span-constrained random 
walks suggested by the work of Dimarzio and Rubin. (9) These will include 
statistics of the occupancy, and the expected number of points visited in an 
n-step random walk. 

A P P E N D I X .  D E R I V A T I O N  OF EQ. (4 )  

Without loss of generality we can consider a symmetric random walk 
confined to an interval (1, N - 1) so that all lattice points >~N or ~<0 are 
considered to be absorbing points. For  simplicity we abbreviate U~(r; 0, Nlro) 
by U~(r) since the barriers remain fixed in the calculation. It then follows 
that if r ~ (1, N - 1), the transition probabilities satisfy 

N--J .  

U~+~(r) = ~.. U~(p)p(r- p), Uo(r) = 3~,ro (A1) 
p = l  
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In order to find an asymptotic solution we will assume that the solution can 
be represented as 

N - 1  

U,(r) = ~ Aj(n) sin(irjr/U) (A2) 
./=1 

and seek to find the Aj(n). If we use the orthogonality relation 

N-1 .t 
=~1 sin 7rjr . ~rjr N 
, --~ sin N = -2 3m' (A3) 

we find that the Aj(n) satisfy 

2 N-l~,lN-1/_., ~ .  ~rlp . ~rjr 
Aj(n + 1) = ~r ._~=~ o=1 z=---1 Az(n)p(r - p) sin sin = - E  

N--I N-I N--I = ~ =lp - "  

N ~ A,(,0 ~ sin --y 7. t'(~) sin ~'Z(p + ~) (A4) 
I=1 0=1 s=l --p N 

We can rewrite the innermost sum over s as 
N-1-0 N-2 N -2 -0 

7 = E E (AS> 
s =l --0 s =  --(N--2) s=N-a s =  --(N-2) 

When we make this decomposition and take advantage of  the orthogonality 
relation in Eq. (A3), we find that 

2 N-1 N-1 rrlp 
A,(n + i) = ~N-2(j)Aj(n) -- ~N ,~=1 A,(n) ~_, s i n -  

= D= 1 N 

x + p(s) sin (A6) 
- o  s= - 2 )  N 

We will look for a recursive solution of the form 

A,(n) = A}~ + A}l'(n) + A}2>(n) +--.  

where the zeroth order iterate is chosen to satisfy 

A}~ + 1) = hu_2(j)A}~ or A}~ = 2 . /~rjro~ sm t--~-- ] A~r_ 2(j) (A7) 

Since this choice of the A}~ assures us that the initial condition on the 
Uo(r) is satisfied, we must also have A}m)(0) = 0 for m # 0. In the next 
order of  iteration we have 

A}~)(n + 1) = hu_2(j)A}~(n) 
N-I N--I 4 w" ~rlro . =lp . rrjo 

N2 ~ A~'r-2(l) E s in - i f -  sin - ~  S l n  

l =  0=I 

x + p(s) cos A ,  (A8) 
\s=N--o 8= --2) 

/ T  
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Since the last term is a known quantity, at least in theory, we will call it Bj(n). 
It is then easy to verify that a solution to this last equation is 

A}t)(n) = -(A~v_2(j)Bj(0) + ,~$2~(j)Bj(1) + A~r2~(j)Bj(2) + ... + By(n)) 
(A9) 

We therefore turn our attention to the Bj(k), where 
N -I N -1 4 �9 ~rlro . ~rlp . zrjp B,(k) = - ~  ~. A~z_2(l ) ~ sln--~--sm--~- sm 
I = 1  .0=1 

x + p(s) cos - -  
8 o 8 =  - 2 )  N 

By summing over l we can also write this as 

Bj(k) ~ D_~_ 1 U~~ sin -~- =~_ --}- = COS -~- 
= 8 0 s= - ( N - 2 ) I  

(A11) 
where 

-N2 N-~ _ -N'dP . ,dro (A12) U~~ = 1~1 ~v 2(0 sin sm 
N 

is the k-step transition probability in the zeroth order of iteration. 
We will now show that A}l~(n)~ 0 at a rate faster than l IN as 

N2/(na 2) ---> oo for the case of symmetric, finite-variance random walks, by 
an approximate evaluation of the Bj(n). A similar proof can be given for 
random walk characterized by the transition probability given in Eq. (19). 
In the limit N2/(mr 2) ~ oo the asymptotic expression for U~~ can be 
derived as 

1 
U<,~ ~ (2=ntr2)l, 2 ( exp[  (p 2~n~)2] - exp[ (p2na2 -+ r-~ (A13) 

by converting the sum to an integral. As a second step we would like to 
convert the sum over p in Eq. (A11) to an integral. For this purpose we will 
need to redefine the sums over s so that the limits are continuous variables 
rather than discrete ones. This can be done, for example, by defining the 
limit N - g to be [N - p] where the [...] means "largest integer contained 
in." Furthermore, we can set p = Nv and r0 = NO, where v is the integration 
variable and 0 = O(1). We then find that 

[ 2 ]1'2 f 1 N 2 
B,(n),~ k~n~Z] Jo (exp[  -2--~-~~ (v--  0)2] - exp[--2~z2 ( v +  0)2]} 

[ -  N v 3 \  

x s i n ( ~ ' j v ) ~  +8~,_N)p(s)coslrjSdv (A14) 
s = [ N _ N v ]  - N  
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Since N2/ne  2 is assumed to be large, we can use Lap lace ' s  me thod  to f ind an 

a p p r o x i m a t e  value o f  the integral .  I t  is obvious  tha t  in tha t  l imit  only  the 
n e i g h b o r h o o d  o f  v = 0 will lead  to a cont r ibu t ion .  I t  is s t ra igh t forward  to  
show tha t  

2 ( .@ I-N01\ rrjs 
Bj(n) ~r sin(~rj0) z_., + N ~ . ~=tN(1 -o,, , = ~ _ J p ( s )  cos - -  (A15) 

But the sums in this express ion are o(1) as N--~  or, so tha t  Bj(n) ~ ej (N) /N,  

where es(N ) ~ 0 as N--> oo. Thus  the A}13(n) are asympto t i c  to 

A s - 2 ( l )  A~l~(n  ) ~ , j ( N )  1 - ~ . 1  
N 1 - AN-2(j) (A16) 

which tends to zero at  a ra te  fas ter  than  1/N as N--> oo. A similar  argument 
can be used to show tha t  when m > 1 the A}m~(n) tend  to zero at  an even 
faster  rate  as N--> oo. 

As a final step we can change the in terval  (0, N)  to ( - a ,  b) by  changing  

o to p + a and  ro to ro + a in Eq. (A12) and  changing  N to a + b. This 
leads to the  result  given in Eq. (4). 
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